论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Changes in Soil Organic Carbon and Carbon Fractions Under Different Land Use and Management Practices After Development From Parent Material of Mollisols
英文论文题目: Changes in Soil Organic Carbon and Carbon Fractions Under Different Land Use and Management Practices After Development From Parent Material of Mollisols
第一作者: 尤孟阳
英文第一作者: You, M. Y.
联系作者: 韩晓增
英文联系作者: Han, X. Z.
外单位作者单位:
英文外单位作者单位:
发表年度: 2014
卷: 179
期: 4
页码: 205-210
摘要: Soil organic carbon (SOC) is important to soil nutrient status in agroecosystems. Some of the soils of the Northeast of China, noted for their high SOC content, suffer from serious soil erosion to the point of having the parent material exposed or near the surface, which has raised concerns for food security. The Chinese Mollisols were derived from loamy Quaternary loess that developed from parent material. To effectively restore parent material to productive soils, information on the effects of land use/management practices on SOC concentration and C fractions in loess parent material of Chinese Mollisols is needed. The main objective of this study was to investigate the changes in C sequestration and C density fractions by physical and chemical fractionation (humic substances) occurring in the process of soil development from parent material under different management practices and land use. Six treatments were imposed in plots of loess parent material in a 5-year experiment: (1) natural fallow without weed control; (2) alfalfa; (3) soybean-maize rotation (S-M), straw of unfertilized maize removed; (4) S-M, straw of chemically fertilized maize removed; (5) S-M, straw of chemically fertilized maize and dried soybean powder incorporated; (6) S-M, biomass, including grain, of chemically fertilized maize incorporated. The SOC content increased by 15% to 77% depending on treatments. In the process of soil development, the C fractions of the parent material changed rapidly. The heavy fraction C pool accounted for a larger proportion of total SOC (78%-89%) than both the free light fraction (2.1%-10.2%) and the occluded light fraction (1.3%-12.9%) pools. The occluded light fraction was more sensitive than the free light fraction as indicator of soil C changes because of different land use and management practices. Humin accounted for a larger proportion (29.9%-54.7%) of SOC than fulvic acid (18.0%-34.4%), which was larger than the humic acid fraction (11.8%-14.8%). Our results indicate that SOC increase in loess parent material depends on types and amounts of organic matter inputs. The treatments, in which aboveground crop biomass and grain were incorporated, contributed more to C sequestration, distributions of density fraction, and humic substances than the treatments without organic matter. Management practices maximizing biomass inputs are recommended to restore SOC in degraded Chinese Mollisols in order to restore their fertility.
英文摘要: Soil organic carbon (SOC) is important to soil nutrient status in agroecosystems. Some of the soils of the Northeast of China, noted for their high SOC content, suffer from serious soil erosion to the point of having the parent material exposed or near the surface, which has raised concerns for food security. The Chinese Mollisols were derived from loamy Quaternary loess that developed from parent material. To effectively restore parent material to productive soils, information on the effects of land use/management practices on SOC concentration and C fractions in loess parent material of Chinese Mollisols is needed. The main objective of this study was to investigate the changes in C sequestration and C density fractions by physical and chemical fractionation (humic substances) occurring in the process of soil development from parent material under different management practices and land use. Six treatments were imposed in plots of loess parent material in a 5-year experiment: (1) natural fallow without weed control; (2) alfalfa; (3) soybean-maize rotation (S-M), straw of unfertilized maize removed; (4) S-M, straw of chemically fertilized maize removed; (5) S-M, straw of chemically fertilized maize and dried soybean powder incorporated; (6) S-M, biomass, including grain, of chemically fertilized maize incorporated. The SOC content increased by 15% to 77% depending on treatments. In the process of soil development, the C fractions of the parent material changed rapidly. The heavy fraction C pool accounted for a larger proportion of total SOC (78%-89%) than both the free light fraction (2.1%-10.2%) and the occluded light fraction (1.3%-12.9%) pools. The occluded light fraction was more sensitive than the free light fraction as indicator of soil C changes because of different land use and management practices. Humin accounted for a larger proportion (29.9%-54.7%) of SOC than fulvic acid (18.0%-34.4%), which was larger than the humic acid fraction (11.8%-14.8%). Our results indicate that SOC increase in loess parent material depends on types and amounts of organic matter inputs. The treatments, in which aboveground crop biomass and grain were incorporated, contributed more to C sequestration, distributions of density fraction, and humic substances than the treatments without organic matter. Management practices maximizing biomass inputs are recommended to restore SOC in degraded Chinese Mollisols in order to restore their fertility.
刊物名称: Soil Science
英文刊物名称: Soil Science
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者:
英文参与作者: Burger, M.; Li, L. J.; Zou, W. X.; Li, N.; Qiao, Y. F.; Han, X. Z.
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1