|
论文编号: |
|
论文题目: |
Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment |
英文论文题目: |
Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment |
第一作者: |
乔云发 |
英文第一作者: |
Qiao, Y. F. |
联系作者: |
Silva, L. C. R. |
英文联系作者: |
Silva, L. C. R. |
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2014 |
卷: |
329 |
期: |
|
页码: |
318-327 |
摘要: |
We investigated the effect of understory vegetation on soil C and N dynamics in two Pinus ponderosa plantations under contrasting edaphic and climatic conditions, where understory is often removed to reduce fire risk and competition for water and nutrients. A dual-isotope (C-13 and N-15) experiment was used to trace C and N from various litter mixtures (i.e., pine and understory litter, as well as their mixture, with and without isotope label replicated in a completely randomized design at each site) and into multiple soil depths and physical fractions following 10 years of decomposition. The presence of understory shrubs increased decomposition and accumulation of C and N from P. ponderosa litter in forest soils. Patterns of C and N accumulation varied with both treatment (litter composition) and environmental conditions (site), but the general response was similar in both plantations. Understory removal favored accumulation of undecomposed residues (light fraction), while addition of understory litter induced aggregate formation and accumulation of litter-derived C and N in occluded and mineral fractions. After 10 years of decomposition, most of litter biomass was lost (70-89%) and litter-derived C and N represented less than 1% of the original soil pool, but the presence of understory vegetation increased accumulation of litter C and N into occluded soil fractions. Despite large C and N losses the presence of understory vegetation increased the long-term productivity of forest soils, enhancing turnover, stabilizing organic matter and conserving N. |
英文摘要: |
We investigated the effect of understory vegetation on soil C and N dynamics in two Pinus ponderosa plantations under contrasting edaphic and climatic conditions, where understory is often removed to reduce fire risk and competition for water and nutrients. A dual-isotope (C-13 and N-15) experiment was used to trace C and N from various litter mixtures (i.e., pine and understory litter, as well as their mixture, with and without isotope label replicated in a completely randomized design at each site) and into multiple soil depths and physical fractions following 10 years of decomposition. The presence of understory shrubs increased decomposition and accumulation of C and N from P. ponderosa litter in forest soils. Patterns of C and N accumulation varied with both treatment (litter composition) and environmental conditions (site), but the general response was similar in both plantations. Understory removal favored accumulation of undecomposed residues (light fraction), while addition of understory litter induced aggregate formation and accumulation of litter-derived C and N in occluded and mineral fractions. After 10 years of decomposition, most of litter biomass was lost (70-89%) and litter-derived C and N represented less than 1% of the original soil pool, but the presence of understory vegetation increased accumulation of litter C and N into occluded soil fractions. Despite large C and N losses the presence of understory vegetation increased the long-term productivity of forest soils, enhancing turnover, stabilizing organic matter and conserving N. |
刊物名称: |
Forest Ecology and Management |
英文刊物名称: |
Forest Ecology and Management |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
Miao, S. J., Silva, L. C. R., Horwath, W. R. |
|
|