|
论文编号: |
|
论文题目: |
The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis |
英文论文题目: |
The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis |
第一作者: |
管清杰 |
英文第一作者: |
Guan, Q. J. |
联系作者: |
王臻昱 |
英文联系作者: |
Wang, Z. Y. |
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2014 |
卷: |
82 |
期: |
|
页码: |
1-8 |
摘要: |
The role of zinc finger proteins in organismal stress conditions has been widely reported. However, little is known concerning the function of CCHC-type zinc finger proteins in rice. In this study, OsZFP6, a rice CCHC-type zinc finger protein 6 gene, was cloned from rice using RT-PCR. The OsZFP6 protein contains 305 amino acids and a conserved zinc finger domain and is localised to the nucleus. Southern blot analysis revealed that a single copy was encoded in the rice genome. OsZFP6 expression was increased by abiotic stress, including salt (NaCl), alkali (NaHCO3) and H2O2 treatment. When OsZFP6 was transformed into yeast, the transgenic yeast showed significantly increased resistance to NaHCO3 compared to the control. Moreover, Arabidopsis transgenic plants overexpressing OsZFP6 were more tolerant to both NaHCO3 and H2O2 treatments. Overall, we uncovered a role for OsZFP6 in abiotic stress responses and identified OsZFP6 as a putatively useful gene for developing crops with increased alkali and H2O2 tolerance. |
英文摘要: |
The role of zinc finger proteins in organismal stress conditions has been widely reported. However, little is known concerning the function of CCHC-type zinc finger proteins in rice. In this study, OsZFP6, a rice CCHC-type zinc finger protein 6 gene, was cloned from rice using RT-PCR. The OsZFP6 protein contains 305 amino acids and a conserved zinc finger domain and is localised to the nucleus. Southern blot analysis revealed that a single copy was encoded in the rice genome. OsZFP6 expression was increased by abiotic stress, including salt (NaCl), alkali (NaHCO3) and H2O2 treatment. When OsZFP6 was transformed into yeast, the transgenic yeast showed significantly increased resistance to NaHCO3 compared to the control. Moreover, Arabidopsis transgenic plants overexpressing OsZFP6 were more tolerant to both NaHCO3 and H2O2 treatments. Overall, we uncovered a role for OsZFP6 in abiotic stress responses and identified OsZFP6 as a putatively useful gene for developing crops with increased alkali and H2O2 tolerance. |
刊物名称: |
Plant Physiology and Biochemistry |
英文刊物名称: |
Plant Physiology and Biochemistry |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
Wang, L. F., Bu, Q. Y., Wang, Z. Y. |
|
|