|
论文编号: |
|
论文题目: |
Water quantity and quality assessment on a tertiary treatment wetland in a tropical climate |
英文论文题目: |
Water quantity and quality assessment on a tertiary treatment wetland in a tropical climate |
第一作者: |
孙广智 |
英文第一作者: |
Sun, G. Z. |
联系作者: |
孙广智 |
英文联系作者: |
Sun, G. Z. |
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2015 |
卷: |
71 |
期: |
4 |
页码: |
511-517 |
摘要: |
This study aimed to assess the quantity and quality of water in a surface flow constructed wetland in Australia's far north Queensland. Owing to tropical climate in the region, the wetland provided dual functions: retention of a treated wastewater for zero discharge during the dry season and tertiary treatment prior to discharge during the wet season. Rainfall data, permeability of wetland soil, evaporation, inflow and outflow were analysed in a water balance analysis; the results showed that based on a 72-year-average rainfall pattern, daily wastewater inflow of 85 m(3)/d is the maximum this wetland can cope with without breaching its discharge certificate. In water quality analysis, the K-C* model was used to predict changes of biochemical oxygen demand (BOD, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and faecal coliforms (FC) in the wetland. Model predictions were compared with field sampling results. It was found that the wetland was effective in removing FC (> 99.9%), TN (70.7%) and TP (68.2%), for which the predictions by the K-C* model were consistent with field testing results. However, significant disparities between the predictions and testing results were found for BOD and SS. A revised K-C* equation was proposed to account for the internal generation of organics in constructed wetlands with a long retention time. |
英文摘要: |
This study aimed to assess the quantity and quality of water in a surface flow constructed wetland in Australia's far north Queensland. Owing to tropical climate in the region, the wetland provided dual functions: retention of a treated wastewater for zero discharge during the dry season and tertiary treatment prior to discharge during the wet season. Rainfall data, permeability of wetland soil, evaporation, inflow and outflow were analysed in a water balance analysis; the results showed that based on a 72-year-average rainfall pattern, daily wastewater inflow of 85 m(3)/d is the maximum this wetland can cope with without breaching its discharge certificate. In water quality analysis, the K-C* model was used to predict changes of biochemical oxygen demand (BOD, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and faecal coliforms (FC) in the wetland. Model predictions were compared with field sampling results. It was found that the wetland was effective in removing FC (> 99.9%), TN (70.7%) and TP (68.2%), for which the predictions by the K-C* model were consistent with field testing results. However, significant disparities between the predictions and testing results were found for BOD and SS. A revised K-C* equation was proposed to account for the internal generation of organics in constructed wetlands with a long retention time. |
刊物名称: |
Water Science and Technology |
英文刊物名称: |
Water Science and Technology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
Saeed, T., Zhang, G. X., Sivakugan, N. |
|
|