|
论文编号: |
|
论文题目: |
Recording Urban Land Dynamic and Its Effects during 2000-2019 at 15-m Resolution by Cloud Computing with Landsat Series |
英文论文题目: |
Recording Urban Land Dynamic and Its Effects during 2000-2019 at 15-m Resolution by Cloud Computing with Landsat Series |
第一作者: |
董禹麟 |
英文第一作者: |
Dong, YL |
联系作者: |
何兴元 |
英文联系作者: |
He, XY |
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2020 |
卷: |
12 |
期: |
15 |
页码: |
|
摘要: |
Cities, the core of the global climate change and economic development, are high impact land cover land use change (LCLUC) hotspots. Comprehensive records of land cover land use dynamics in urban regions are essential for strategic climate change adaption and mitigation and sustainable urban development. This study aims to develop a Google Earth Engine (GEE) application for high-resolution (15-m) urban LCLUC mapping with a novel classification scheme using pan-sharpened Landsat images. With this approach, we quantified the annual LCLUC in Changchun, China, from 2000 to 2019, and detected the abrupt changes (turning points of LCLUC). Ancillary data on social-economic status were used to provide insights on potential drivers of LCLUC by examining their correlation with change rate. We also examined the impacts of LCLUC on environment, specifically air pollution. Using this approach, we can classify annual LCLUC in Changchun with high accuracy (all above 0.91). The change detection based on the high-resolution wall-to-wall maps show intensive urban expansion with the compromise of cropland from 2000 to 2019. We also found the growth of green space in urban regions as the result of green space development and management in recent years. The changing rate of different land types were the largest in the early years of the observation period. Turning points of land types were primarily observed in 2009 and 2010. Further analysis showed that economic and industry development and population migration collectively drove the urban expansion in Changchun. Increasing built-up areas could slow wind velocity and air exchange, and ultimately led to the accumulation of PM2.5. Our implement of pan-sharpened Landsat images facilitates the wall-to-wall mapping of temporal land dynamics at high spatial resolution. The primary use of GEE for mapping urban land makes it replicable and transferable by other users. This approach is a first crucial step towards understanding the drivers of change and supporting better decision-making for sustainable urban development and climate change mitigation. |
英文摘要: |
Cities, the core of the global climate change and economic development, are high impact land cover land use change (LCLUC) hotspots. Comprehensive records of land cover land use dynamics in urban regions are essential for strategic climate change adaption and mitigation and sustainable urban development. This study aims to develop a Google Earth Engine (GEE) application for high-resolution (15-m) urban LCLUC mapping with a novel classification scheme using pan-sharpened Landsat images. With this approach, we quantified the annual LCLUC in Changchun, China, from 2000 to 2019, and detected the abrupt changes (turning points of LCLUC). Ancillary data on social-economic status were used to provide insights on potential drivers of LCLUC by examining their correlation with change rate. We also examined the impacts of LCLUC on environment, specifically air pollution. Using this approach, we can classify annual LCLUC in Changchun with high accuracy (all above 0.91). The change detection based on the high-resolution wall-to-wall maps show intensive urban expansion with the compromise of cropland from 2000 to 2019. We also found the growth of green space in urban regions as the result of green space development and management in recent years. The changing rate of different land types were the largest in the early years of the observation period. Turning points of land types were primarily observed in 2009 and 2010. Further analysis showed that economic and industry development and population migration collectively drove the urban expansion in Changchun. Increasing built-up areas could slow wind velocity and air exchange, and ultimately led to the accumulation of PM2.5. Our implement of pan-sharpened Landsat images facilitates the wall-to-wall mapping of temporal land dynamics at high spatial resolution. The primary use of GEE for mapping urban land makes it replicable and transferable by other users. This approach is a first crucial step towards understanding the drivers of change and supporting better decision-making for sustainable urban development and climate change mitigation. |
刊物名称: |
REMOTE SENSING |
英文刊物名称: |
REMOTE SENSING |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
Ren, Zhibin;Fu, Yao;Miao, Zhenghong;Yang, Ran;Sun, Yuanhe |
英文参与作者: |
Ren, Zhibin;Fu, Yao;Miao, Zhenghong;Yang, Ran;Sun, Yuanhe |
|
|