|
论文编号: |
|
论文题目: |
Effect of the transgenerational exposure to elevated CO(2)on low temperature tolerance of winter wheat: Chloroplast ultrastructure and carbohydrate metabolism |
英文论文题目: |
Effect of the transgenerational exposure to elevated CO(2)on low temperature tolerance of winter wheat: Chloroplast ultrastructure and carbohydrate metabolism |
第一作者: |
Li, Hui |
英文第一作者: |
Li, H |
联系作者: |
宋凤斌;李向楠 |
英文联系作者: |
Song, FB;Li, XN |
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2020 |
卷: |
|
期: |
|
页码: |
|
摘要: |
The transgenerational effect of elevated atmospheric CO(2)concentration (e[CO2]) on low temperature response in wheat is still little investigated, through the interaction ofe[CO2], and low-temperature stress has been reported in a single generation. Here, the low temperature-induced modifications of chloroplast ultrastructure and carbohydrate metabolism in wheat after four generations continuously grown under ambient CO(2)concentration (a[CO2]) ande[CO2] (2014-2018) were investigated. The results indicated that the transgenerational exposure toe[CO2] increased the number of grana lamellae and the amounts of osmiophilic lipid droplets, attenuating the negative effect of low temperature on chloroplast ultrastructure. The transgenerationale[CO2] enhanced the activities of antioxidant enzymes (i.e. SOD, POD and CAT) and concentrations of osmotic substances (i.e. proline and soluble sugar), which alleviated the low temperature-induced oxidative damage to the chloroplast ultrastructure. In addition, transgenerational exposure of wheat toe[CO2] increased activities of vacInv and cwInv, while decreased fructokinase activity, which affected the sucrose metabolism in wheat leaf. These findings elucidated that transgenerational exposure toe[CO2] could improve low temperature tolerance of winter wheat, which provide novel insights to the response of wheat to future climate change. |
英文摘要: |
The transgenerational effect of elevated atmospheric CO(2)concentration (e[CO2]) on low temperature response in wheat is still little investigated, through the interaction ofe[CO2], and low-temperature stress has been reported in a single generation. Here, the low temperature-induced modifications of chloroplast ultrastructure and carbohydrate metabolism in wheat after four generations continuously grown under ambient CO(2)concentration (a[CO2]) ande[CO2] (2014-2018) were investigated. The results indicated that the transgenerational exposure toe[CO2] increased the number of grana lamellae and the amounts of osmiophilic lipid droplets, attenuating the negative effect of low temperature on chloroplast ultrastructure. The transgenerationale[CO2] enhanced the activities of antioxidant enzymes (i.e. SOD, POD and CAT) and concentrations of osmotic substances (i.e. proline and soluble sugar), which alleviated the low temperature-induced oxidative damage to the chloroplast ultrastructure. In addition, transgenerational exposure of wheat toe[CO2] increased activities of vacInv and cwInv, while decreased fructokinase activity, which affected the sucrose metabolism in wheat leaf. These findings elucidated that transgenerational exposure toe[CO2] could improve low temperature tolerance of winter wheat, which provide novel insights to the response of wheat to future climate change. |
刊物名称: |
JOURNAL OF AGRONOMY AND CROP SCIENCE |
英文刊物名称: |
JOURNAL OF AGRONOMY AND CROP SCIENCE |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
Liu, Shengqun;Guo, Junhong;Liu, Fulai |
英文参与作者: |
Liu, Shengqun;Guo, Junhong;Liu, Fulai |
|
|