论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Grass barriers for mitigating diffuse pollution within a source water area - A case study of Northeast China
英文论文题目: Grass barriers for mitigating diffuse pollution within a source water area - A case study of Northeast China
第一作者: 欧洋
英文第一作者: Y. Ou
联系作者: 欧洋
英文联系作者: Y. Ou
外单位作者单位:
英文外单位作者单位:
发表年度: 2021
卷: 243
期:
页码:
摘要:

Agricultural diffuse pollution caused by runoff and soil loss from cropland has been a serious environmental problem in the black soil area of Northeast China. While water and soil conservation measures have led to a sharp decrease in overland flow within source water sub-watersheds, they have, on the other end, affected the water security of agricultural and domestic use as the water storage capacity of downstream reservoirs decreases year by year. For this study, grass barriers, which are generally considered to have high sediment reduction efficiency, were evaluated for their efficiency as a mitigation measure of diffuse pollution within source water areas. Standard field plots were used to monitor two groups of grass barriers, alfalfa (Medicago sativaL.) and native grass (dominated by Setaria viridis(L.)Beauv.), and slope gradients (3 degrees and 5 degrees) under natural rainfall events over the 2012-2015 period. The results indicated that, during the maize (Zea maysL.) growing season, runoff and sediment reduction efficiencies for the alfalfa barrier were 37.91 % and 62.30 %, respectively. And more than 50 % of the nutrient loads (e.g., total nitrogen (TN), total phosphorus (TP), and nitrate (NO3--N)) could be removed by the alfalfa barrier. The environmental loads mitigation efficiency of grass barrier in spring was relatively low and unstable. Both slope and barrier width had a significant impact on the water and soil conservation function of grass barriers, while rainfall intensity and grass type were mainly related to runoff reduction. Overall, these finding could provide some specific recommendations for future grass barrier design and large-scale application in a source water area of Northeast China.

英文摘要:

Agricultural diffuse pollution caused by runoff and soil loss from cropland has been a serious environmental problem in the black soil area of Northeast China. While water and soil conservation measures have led to a sharp decrease in overland flow within source water sub-watersheds, they have, on the other end, affected the water security of agricultural and domestic use as the water storage capacity of downstream reservoirs decreases year by year. For this study, grass barriers, which are generally considered to have high sediment reduction efficiency, were evaluated for their efficiency as a mitigation measure of diffuse pollution within source water areas. Standard field plots were used to monitor two groups of grass barriers, alfalfa (Medicago sativaL.) and native grass (dominated by Setaria viridis(L.)Beauv.), and slope gradients (3 degrees and 5 degrees) under natural rainfall events over the 2012-2015 period. The results indicated that, during the maize (Zea maysL.) growing season, runoff and sediment reduction efficiencies for the alfalfa barrier were 37.91 % and 62.30 %, respectively. And more than 50 % of the nutrient loads (e.g., total nitrogen (TN), total phosphorus (TP), and nitrate (NO3--N)) could be removed by the alfalfa barrier. The environmental loads mitigation efficiency of grass barrier in spring was relatively low and unstable. Both slope and barrier width had a significant impact on the water and soil conservation function of grass barriers, while rainfall intensity and grass type were mainly related to runoff reduction. Overall, these finding could provide some specific recommendations for future grass barrier design and large-scale application in a source water area of Northeast China.

刊物名称: Agricultural Water Management
英文刊物名称: Agricultural Water Management
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: Y. Ou, A. N. Rousseau, B. X. Yan, L. X. Wang and Y. Zhang
英文参与作者: Y. Ou, A. N. Rousseau, B. X. Yan, L. X. Wang and Y. Zhang
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1